

CONGELACIÓN DE EMBRIONES

Lino Andrés Oyuela DMV ULS linodmv@hotmail.com

HISTORIA

- 1949 el equipo de Polge trabajando con semen bovino descubren el uso del glicerol.
- El equipo de Lovelock en 1959 el dimetilsulfoxido.
- 1972 Wilmut y Rowson y por Whittinghman, la congelación lenta.
- Congelación rápida

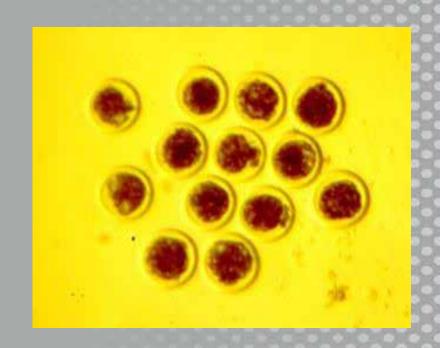
TIPOS DE CONGELACIÓN

- Congelación rápida
- Congelación lenta

CONGELACIÓN RÁPIDA

- Evitar la creación de cristales
 Intracelulares
- Vitrificación amorfa
- Solución a más de 6 molar

GENERALIDADES


- Ambiente limpio
- Condiciones ideales de asepsia
- Temperatura controlada entre 20 y 25

MANEJO DE LOS EMBRIONES

- Zona pelúcida intacta.
- Libres de detritos celulares.
- Lavados en solución con antibióticos y antimicóticos

CONGELACIÓN SIN CRIOPROTECTOR

- Formación de cristales
- Cristales de agua grandes
- Ruptura de membranas

FUNCIÓN DE CRIOPROTECTORES

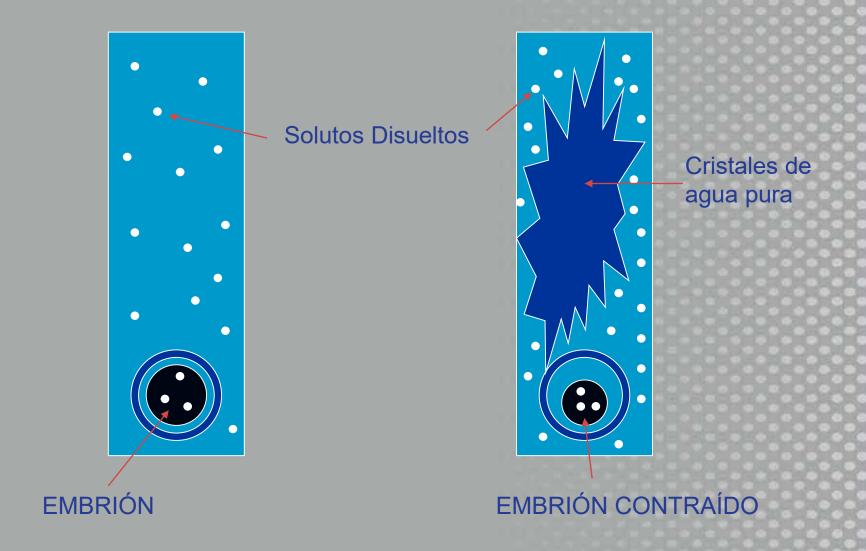
- Evitar la formación de cristales intracelulares.
 - Glicerol (Glycerol) (Gly)
 - Etilen glicol (Etylen Glycol) (Ety)
- Altamente solubles
- Baja toxicidad
- Peso molecular que permita permeabilidad

CÉLULAS VIVAS

El proceso de congelación de células vivas constituye un proceso complejo físico químico en el cual hay un movimiento de calor y aguan entre la célula y el medio que la rodea. Existe una tasa de enfriamiento óptima para la permeabilidad del agua.

SEEDING

- Superenfriamiento,
- -10 °C o -15 °C) hay formación repentina del hielo produciéndose un aumento brusco de temperatura denominado calor latente de fusión.
- Evitar el superenfriamiento: SEEDING, el agua de la célula y entre los cristales no se congela por los solutos que bajan su temperatura de cristalización


ENFRIAMIENTO PROGRESIVO

 Durante en enfriamiento progresivo los cristales de hielo se hacen cada vez mas grandes, la concentración del soluto aumenta y el embrión responde osmoticamente perdiendo agua. (Palma, 2001)

ENFRIAMIENTO PROGRESIVO

FORMACIÓN DE CRISTALES INTRACELULARES

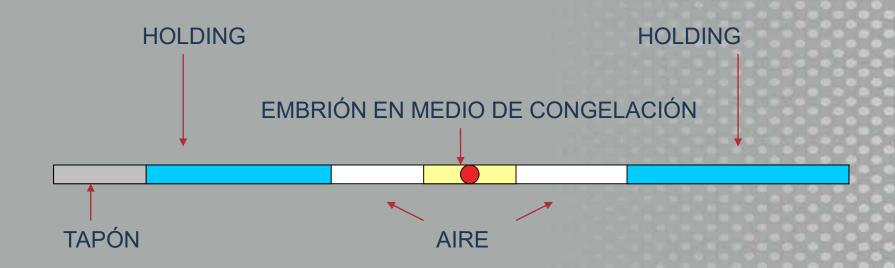
- Durante la congelación
 - Tasa Ideal (-0.5 ° C/ minuto)
 - *Si es demasiado lento el crioprotector puede ser tóxico.

- Descongelación: Varia dependiendo del método de congelación
 - Muy rápida (200° C/min)
 - Lenta (20 ° C min)* muy poco usada

GLICEROL

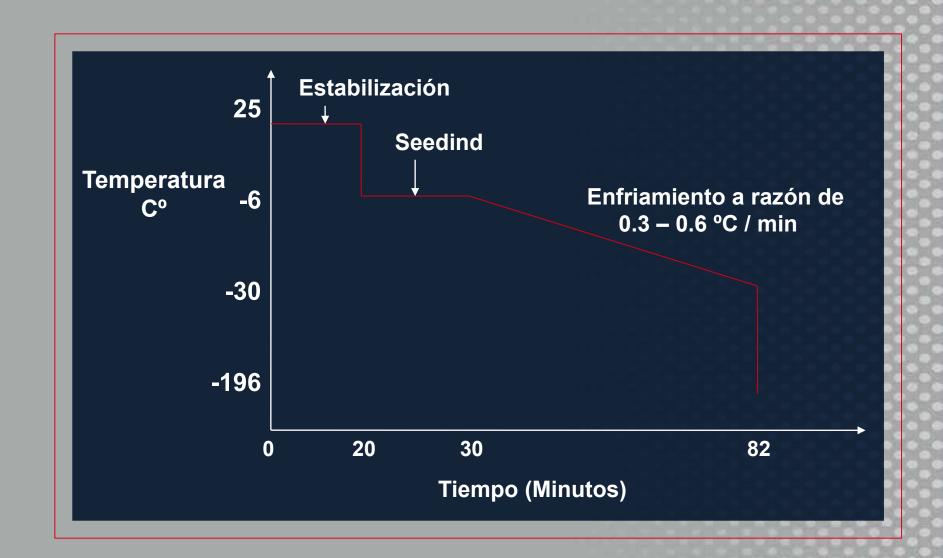
- Es un molécula grande
- Adición ascendente
 - 5% + 0.3 sucrosa por 5 minutos
 - 10% + sucrosa por 15 minutos

- Descongelación en tres pasos
 - = 5% + sucrosa
 - 2.5% + sucrosa
 - 0% + sucrosa


ETILEN GLICOL

- Un paso, molécula mas pequeña
- Mínimo 5 minuto y máximo 10 min.

Transferencia directa sin remoción



FORMA DE LLENADO DE LA PAJILLA

CURVA DE ENFRIAMIENTO

CONGELACION EN GLICEROL

- GLY:
- Composición Vigro freeze plus
 - PBS DUBELCO MODIFICADO
 - 0,4% BSA
 - 0,1M SUCROSA
 - 10% GLICEROL
- PROTOCOLO:
 - 5 MIN 50% FREEZE PLUS + 50% HOLDING
 - 15 MIN 100% FREEZE PLUS
 - PAJILLA
 - CONGELADOR

■ EMBRIONES DE EXPORTACION LAVADO CON TRIPSINA

CONGELACION ETILEN GLICOL

- ETHY
- Composición Vigro Ethylen Glycol Freeze Plus
 - 1,5M ETILEN GLICOL
 - 0,4% BSA
 - 0,1M SUCROSA
- PROTOCOLO
 - NO MENOS DE 5 MIN Y NO MAS DE 10 MIN EN 100% Vigro Ethylen Glycol Plus
 - PAJILLA
 - CONGELADOR

■ EMBRIONES DE EXPORTACION LAVADO CON TRIPSINA

DESCONGELACIÓN:

- ETHY
 - MEDIOAMBIENTE POR 3SEG
 - AGUA A 30 °C POR8 SEG
 - TRANSFERENCIADIRECTA

- GLY
 - MEDIO AMBIENTEPOR 3 SEG
 - AGUA A 30 °C POR 8 SEG
 - ONE STEP POR 15MIN

"()"

DESCONGELACIÓNEN TRES PASOS,5 MIN CADA UNO

TRATAMIENTO CON TRIPSINA

- Paso 0 : Embriones en medio holding (lavados 5 veces)
- Paso 1: Lavado del embrión en tripsina 0.25% (30 a 45 seg)
- Paso 2 : Segundo lavado tripsina0.25% (30 a 45 segundos)
- Paso 3 : Hacer 5 lavados adicionalesen Holding

IDENTIFICACIÓN IETS

- Método estandar mundial
- Marca en:
 - Tapón
 - Pajilla
 - Rótulo en pajilla de 0.5
- Amarillo para Etilen Glicol

NÚMERO ÚNICO DE PAJILLA

Numero consecutivo de las misma colecta

■ Incluirse en el certificado de congelación

■ Etilen glicol debe anteponerse "DT"

UNIDAD BÁSICA

 Código de identificación del técnico/organización/equipo

Código de dos letras indicando la raza

 Número de identificación (registro) de la hembra donante ejemplo:

Ejemplo

- 60107 BR 252 -4 245689
 - 60107: codigo IETS de Embriogen LTDA
 - BR: Brahman
 - 252-4: Numero de la vaca, tatuaje, nombre común o de establo
 - 245689: registro Asocebu

FECHA DE CONGELACIÓN

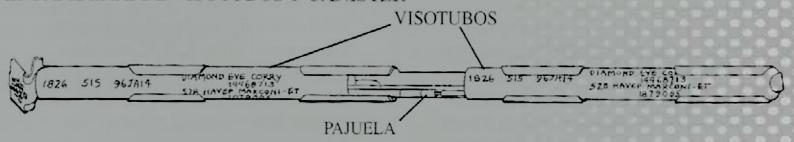
- La fecha de congelación es crítica para identificar embriones colectados de la misma donante en fechas diferentes
- DÍ / ME / AÑ ejemplo 01/EN/06
- AÑ/MO//DA Exportación (en ingles)
- 06/JA/01

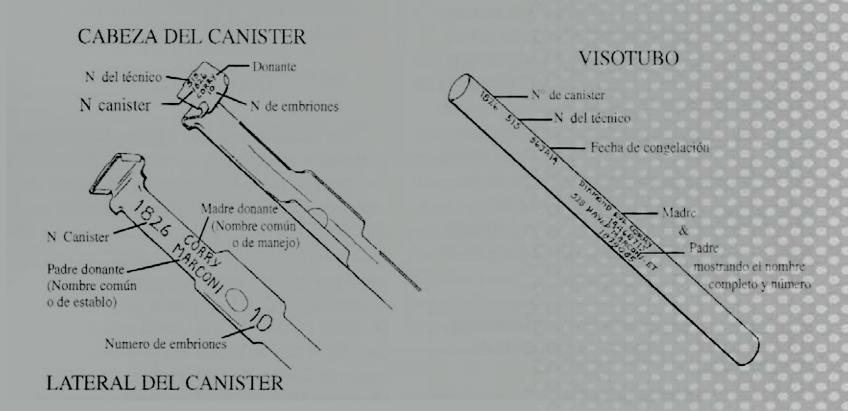
NUMERO DE EMBRIONES

Cada pajilla o vial debe mostrar el número de embriones que contienen, en el caso de contener más de un embrión. Cuando más de un embrión es congelado en una pajilla o vial, es necesario que en el informe de congelación se haga la anotación correspondiente con la calidad y descripción de cada uno

MARCACIÓN DE GOBLET

- Numero de la escalerilla que lo contiene
- Código de la IETS identificando al equipo/ veterinario/ tecnico/ organización que congelo los embriones
- Fecha de congelación día(dos digitos) /mes (dos letras)/año (dos digitos)
- Nombre y numero oficial de identificación de la donante
- Nombre oficial y numero de Semental




MARCADO DE LA ESCALERILLA

- Número único de escalerilla
- Nombre o numero de la hembra donante y del semental (completo o abreviado
- Numero total de embriones que contiene
- Cada vez que se mueva de tanque la escalerilla deberá anotarse el sufijo A, B, C etc...

ENSAMBLAJE DE VISOTUBOS Y CANISTER

TRANSPORTE DE EMBRIONES

La refrigeración es un método sencillo de criopreservación.

■ Entre 0 y 4 °C por cortos periodos de tiempo (24 a 72 horas)

Resultados obtenidos con la transferencia no quirúrgica de embriones refrigerados (Palma, 2001)

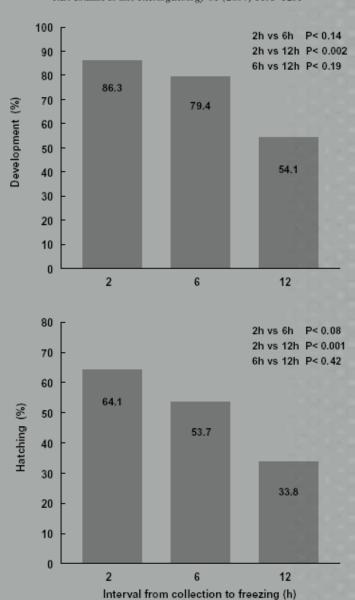
Tiempo de refrigeración	Embriones Transferidos	Receptoras n	s Preñadas %	Referencias
24 horas	19	9	47.3	Refsdal et al 1988
48 horas	16	8	50.0	Bezugly et al 1988
Hasta 72 hrs	222	98	44.1	Lindner et al 1985

CALIDAD DE LOS EMBRIONES A CONGELAR

■ Se debe procurar siempre congelar embriones calidad 1 (excelente), considerar la posibilidad de congelar embriones grado 2 (regular) y definitivamente no congelar embriones grado 3 (malo).

Efecto de la calidad embrionaria pre-congelación sobre el porcentaje de preñez post-transferencia (Palma, 2001)

Calidad del Embrión	Embriones transferidos	Receptor: n	as preñadas %	Referencias
1 (excelente) 2 (regular) 3 (malo)	173 220 83	84 98 20	48.6 44.6 24.1	Leibo 1986
1 (excelente) 2 (regular) 3 (malo)	233 276 276	133 146 86	57.1 52.9 31.2	Arreseigor et al 1998
1 (excelente) 2 (regular) 3 (malo)	1633 565 123	996 301 49	61.0 53.3 39.8	Munar et al 1998



TIEMPO TRANSCURRIDO ENTRE LA COLECCIÓN Y EL CONGELAMIENTO

 El tiempo transcurrido entre la recolección de los embriones y el inicio del proceso de congelamiento en inversamente proporcional al resultado en preñeces

F.D. Jousan et al./Theriogenology 61 (2004) 1193-1201

